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Abstract In this paper, a mathematical characterization of Lunn–Senior’s groups
of univalent substitution isomerism of the linear alkanes, under some natural assump-
tions that reflect their common properties, is given. For each linear alkane, the number
of its monosubstitution derivatives, its di-substitution derivatives, and its tri-substitu-
tion derivatives as linear, quadratic, and cubic polynomial expressions, respectively,
in their number, is obtained. In principle, the number of derivatives of a given linear
alkane with any particular composition can be established. The same explicit expres-
sions for the case of k-substitution homogeneous derivatives of the linear alkanes are
obtained by Balasubramanian (Theoret. Chim. Acta (Berl.) 51:37, 1979).

Keywords Linear alkanes · Lunn–Senior’s group of substitution isomerism ·
Number of substitution derivatives

The main result of the present paper is Theorem 2 which characterizes Lunn–Senior’s
groups of univalent substitution isomerism of the linear alkanes up to conjugation in
the corresponding symmetric group. This is done if one postulates four natural prop-
erties of these groups that are reflections of the common chemical properties of the
corresponding compounds.

Theorem 2 and [7, Corollary 5.2.9] yield two corollaries, which establish the num-
bers of all monosubstitution, di-substitution and tri-substitution derivatives of n-th
linear alkane, n ≥ 2, as polynomials in n, as well as some linear relations among these
polynomials. Using the general formula from [7, Corollary 5.2.9], one can find, in prin-
ciple, the number of derivatives of n-th linear alkane with any particular composition
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as a polynomial expression in n. In the case of k-substitution homogeneous derivatives
of n-th linear alkane C2n+2−kXk , these expressions can be obtained also from formu-
lae (9) and (10) in [1]. There K. Balasubramanian uses Pólya’s theorem, applied for the
group Gn derived as point group of symmetries of the molecule of n-th linear alkane.
The formula from [7, Corollary 5.2.9] gives an explicit expression of the coefficients
of the cycle index of the group Gn before the monomial symmetric functions. The
paper [3] contains a computer program for finding these coefficients. For examples of
application of Pólya’s theorem and its generalizations in a broader context the reader
can see the remarkable review paper [4] and its references, from which we note the
important book [5]. The case of poly-substituted alcohols is considered in [2].

As a rule, the first member of a homologous series has properties that distinguish it
from all other members of this series that have common properties. The homologous
series of linear alkanes is not an exception—for instance, the C1-alkane, methane, has
the alternating group A4 of order 12 as its group of univalent substitution isomerism,
whereas in accord with [9, IV], or [8, Theorem 1.4.1], the corresponding group

G2 = 〈(123), (456), (14)(25)(36)〉 (1)

of the C2-alkane, ethane, has order 18. In order to reflect the common properties of
the linear Cn-alkanes CnH2n+2, n ≥ 2, Lunn and Senior supposed in [9, IV] that their
groups Gn ≤ S2n+2 of univalent substitution isomerism have the form

Gn = 〈(123), (456), (14)(25)(36)(78) . . . (2n + 1, 2n + 2)〉

Thus, G2 � G3 � · · · � Gn � · · ·, and all these groups have order 18. Moreover,

Gn ≤ S[1,6] × S[7,8] × · · · × S[2n+1,2n+2],

the projection

S[1,6] × S[7,8] × · · · × S[2n+1,2n+2] → S[1,6]

induces an isomorphism Gn → G2, and the projection

S[1,6] × S[7,8] × · · · × S[2n+1,2n+2] → S[7,8] × · · · × S[2n+1,2n+2]

induces a surjective homomorphism Gn → H2 = 〈(78) . . . (2n + 1, 2n + 2)〉 with
kernel H = 〈(123), (456)〉. Since Gn ≤ G2×H2, the group Gn is a sub-direct product
of the groups G2 and H2, and Gn/H � H2, [7, 5.5]. In particular, the group Gn is
(n − 1)-transitive, that is, we have ν(2n+1,1);Gn = n − 1.

Here, we make weaker assumptions about the groups Gn ≤ S2n+2 of univalent
substitution isomerism of the linear Cnalkanes, n ≥ 2, which mirror back both their
differences, as well as their common properties:
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(in) the group Gn is (n − 1)-transitive;
(iin) the fixed-point set of Gn is empty;

(iiin) there exists a set of transitivity X ⊂ [1, 2n + 2] of Gn , which contains at least
6 elements;

(ivn) the group Gn has order 18, and the restriction homomorphism S2n+2 → SX

induces an injective homomorphism Gn → SX .

Condition (in) means that when the formula of these alkanes increases uniformly
by a CH2 increment, then the number of sets of transitivity increases by 1, thus under-
lining the differences. Condition (iin) means that no privilege is granted to any single
free valence. On the other hand, properties (iiin) and (ivn) of the group Gn reflect the
similarities of the linear alkanes with ethane.

These conditions are enough for the group Gn to be characterized up to conjugation
in the symmetric group S2n+2.

Theorem 2 The group Gn ≤ S2n+2 of univalent substitution isomerism of the linear
n-th alkane, n ≥ 2, coincides up to conjugation with the group

〈(123), (456), (14)(25)(36)(78) . . . (2n + 1, 2n + 2)〉. (3)

Conversely, the group (3) satisfies conditions (in–ivn).

Corollary 4 For any n ≥ 2 one has the following numbers of products of the n-th
linear alkane:

(i) the number of monosubstitution products is ν(2n+1,1);Gn = n − 1;
(ii) the number of di-substitution homogeneous products is ν(2n,2);Gn = n2−2n+2;

(iii) the number of di-substitution heterogeneous products is

ν(2n,12);Gn
= 2n2 − 5n + 5;

(iv) the number of tri-substitution homogeneous products is

ν(2n−1,3);Gn = 1

3
(2n3 − 9n2 + 19n − 12);

(v) the number of tri-substitution products with composition CnH2n−1X2Y is

ν(2n−1,2,1);Gn = 2n3 − 9n2 + 19n − 14;

(vi) (vi) the number of tri-substitution products with composition CnH2n−1XYZ is

ν(2n−1,13);Gn
= 4n3 − 18n2 + 38n − 28.

Corollary 5 One has the following linear relations, where n is any integer ≥ 2:

(i) ν(2n,12);Gn
− 2ν(2n,2);Gn + ν(2n+1,1);Gn = 0;

(ii) 3ν(2n−1,3);Gn − ν(2n−1,2,1);Gn = 2;
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(iii) ν(2n−1,13);Gn
= 2ν(2n−1,2,1);Gn .

Remark 6 The table below contains the numbers of all monosubstitution, di-sub-
stitution, and tri-substitution derivatives of n − th linear alkane for 2 ≤ n ≤ 10.

(2n + 1,1) (2n, 2) (2n, 12) (2n −1, 3) (2n −1, 2, 1) (2n − 1, 13)

n = 2 (ethane) 1 2 3 2 4 8

n = 3 (propane) 2 5 8 6 16 32

n = 4 (butane) 3 10 17 16 46 92

n = 5 (pentane) 4 17 30 36 106 212

n = 6 (hexane) 5 26 47 70 208 416

n = 7 (heptane) 6 37 68 122 364 728

n = 8 (octane) 7 50 93 196 586 1172

n = 9 (nonane) 8 65 122 296 886 1772

n = 10 (decane) 9 82 155 426 1276 2552

In order to prove Theorem 2 we need some preliminary results. Any permutation
group G ≤ Sd produces a tabloid D = (D1, D2, . . .) by ordering the sets of transi-
tivity D1, D2, . . . of G from largest to smallest, and the tabloid D produces, in turn,
a partition δ = (δ1, δ2, . . .) of d, where δk = |Dk |. The length � = �(δ) of the par-
tition δ is equal to the number of sets of transitivity of G. If we write δ in the form
δ = (1m1 , 2m2 , . . . , dmd ), then we obtain the linear Diofantine system

m1 + m2 + · · · + md = �

m1 + 2m2 + · · · + dmd = d
(7)

in the unknowns m1, m2, . . . , md .
The lemma below characterizes the possible partitions δ under certain assumptions.

Lemma 8 If the permutation group G ≤ Sd has � sets of transitivity and its fixed-
point set is empty, and if d = 2� + 4, then the partition δ of d is equal to one of the
following partitions:

(2�−1, 61), (2�−2, 31, 51), (2�−2, 42), (2�−3, 32, 41), (2�−4, 34).

Proof The condition yields m1 = 0, and let k ≥ 2 be the largest index, such that
mk ≥ 1. Now, the system (7) becomes

m2 + · · · + mk = �

2m2 + · · · + kmk = 2� + 4
(9)

The system

m2 + m3 + · · · + mk = �

m3 + · · · + (k − 2)mk = 4
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is equivalent to (9), and implies k ≤ 6.
If k = 6, then the system (9) has a unique solution

(m2, m3, m4, m5, m6) = (� − 1, 0, 0, 0, 1).

If k = 5, then (9) has a unique solution

(m2, m3, m4, m5, m6) = (� − 2, 1, 0, 1, 0).

In case k = 4, this system has two solutions

(m2, m3, m4, m5, m6) = (� − 2, 0, 2, 0, 0), (� − 3, 2, 1, 0, 0).

If k = 3, then we obtain

(m2, m3, m4, m5, m6) = (� − 4, 4, 0, 0, 0).

In case k = 2 the system (9) is inconsistent and we finish the proof. �	
Lemma 10 If G ≤ S6 is a transitive permutation group of order 18, then G is conju-
gated to the group G2 from (1).

Proof Let H ≤ G be a Sylow 3-subgroup of G. According to Sylow theorems [6,
4.2] the number of Sylow 3-subgroup of G is a divisor of 18 of the type 3k + 1, so
H is a normal subgroup of G. Since |H | = 32, [6, 4.4] yields that the group H is
elementary Abelian of type (3, 3). After eventual conjugation in S6, we can suppose
H = 〈(123), (456)〉. Sylow theorems also yield that there are Sylow 2-subgroup of
G, and let 〈ι〉 is one of them. The generator ι ∈ G has order 2, and G = H〈ι〉. We have
either ι〈(123)〉ι = 〈(123)〉, or ι〈(123)〉ι = 〈(456)〉. In the first case ι〈(456)〉ι = 〈(456)〉
and the sets B1 = {1, 2, 3} and B2 = {4, 5, 6} are two sets of transitivity of G—a
contradiction. In the second case ι〈(456)〉ι = 〈(123)〉, and, in particular, we obtain
ιB1 = B2. Therefore ι ∈ �, where

� = {(14)(25)(36), (15)(26)(34), (16)(24)(35),

(14)(26)(35), (15)(24)(36), (16)(25)(34)} .

The set � is stable with respect to conjugation with elements of the group H and there
are two H -orbits in �:

�′ = {(14)(25)(36), (15)(26)(34), (16)(24)(35)},
and

�′′ = {(14)(26)(35), (15)(24)(36), (16)(25)(34)}.
We have either ι ∈ �′, or ι ∈ �′′, hence we can set ι = (14)(25)(36), or ι =
(14)(26)(35). Thus, G = H〈(14)(25)(36)〉, or G = H〈(14)(26)(35)〉. Since the last
two groups are conjugated in S6 via the transposition (56), we are done. �	
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Proof of Theorem 2 Lemma 8 for d = 2n+2 and � = n−1 yields that any group G ≤
S2n+2 that satisfies the conditions (in–ivn) is a subgroup of one of the following direct
products: S6 ×(S2)

n−2, S5 × S3 ×(S2)
n−3, S4 × S4 ×(S2)

n−3, S4 × S3 × S3 ×(S2)
n−4,

or S3 × S3 × S3 × S3 × (S2)
n−5. Condition (iiin) excludes all possibilities except the

first one. After an eventual conjugation in S2n+2, we can assume that

G ≤ S[1,6] × S[7,8] × · · · × S[2n+1,2n+2],

and, in accord with (ivn), that the projection

S[1,6] × S[7,8] × · · · × S[2n+1,2n+2] → S[1,6]

induces an isomorphism π1 : G → G̃2 where G̃2 is the transitive image of G. Lemma
10 implies that G̃2 is conjugated in S6 = S[1,6] to the group G2 from (1), and hence,
after eventual conjugation in S2n+2 with a permutation from S6, we can suppose that
G̃2 = G2. Let us consider the image �2 of the group G via the projection

S[1,6] × S[7,8] × · · · × S[2n+1,2n+2] → S[7,8] × · · · × S[2n+1,2n+2]

which induces a surjective homomorphism π2 : G → �2. The integer-valued inter-
vals [7, 8], . . . , [2n + 1, 2n + 2], are the remaining n − 2 sets of transitivity of G, and
hence, of �2. In particular, �2 is non-trivial and its order is a power of 2 that divides
|G| = 18. Therefore |�2| = 2, and �2 = 〈(78) . . . (2n +1, 2n +2)〉. The kernel H of
the projection π2 is the only Sylow 3−subgroup of G, and because of the isomorphism
π1 : G → G2 we have H = 〈(123), (456)〉. All permutations in the difference G\H
contain the transpositions (78), . . . , (2n + 1, 2n + 2), and, moreover, π1(G\H) =
H(14)(25)(36). Therefore G\H = H(14)(25)(36)(78) . . . (2n + 1, 2n + 2), so the
group G coincides with (3). A straightforward check shows that the group (3) satisfies
(in) – (ivn). �	

Proof of Corollary 4 We will use the notation from [7, 5.2] as well as [7, Corollary
5.2.9].

(i) It is enough to note that ν(2n+1,1);Gn is the number of sets of transitivity of Gn .
(ii) First, let us suppose n ≥ 3. Then

L (Gn, S2n × S2) =
{((

2n+1
)
,
(
2n)

,
(

21
))

,
((

31, 12n−1
)
,

(
31, 12n−3

)
,
(

12
))

,
((

32, 12n−4
)
,
(

32, 12n−6
)
,
(

12
))

,
((

61, 2n−2
)
,
(

61, 2n−3
)
,
(

21
))}

,
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and hence

ν(2n,2);Gn = 1

18

(
(2n + 2)!
(2n)!2! +3

z(2n+1)

z(2n)z(21)
+4

z(31,12n−1)

z(31,12n−3)z(12)

+ 4
z(32,12n−4)

z(32,12n−6)z(12)
+ 6

z(61,2n−2)

z(61,2n−3)z(21)

)

= 1

18

(
(2n + 2)(2n + 1)

2
+ 3

2n+1(n + 1)!
2nn!211!

+ 4
311!12n−1(2n − 1)!

311!12n−3(2n − 3)!122! + 4
322!12n−4(2n − 4)!

322!12n−6(2n − 6)!122!
+ 6

611!2n−2(n − 2)!
611!2n−3(n − 3)!211!

)

= 1

18
((n + 1)(2n + 1) + 3(n + 1) + 4(n − 1)(2n − 1)

+ 4(n − 2)(2n − 5) + 6(n − 2)) = n2 − 2n + 2.

If n = 2, then

L(G2, S4 × S2) = {((23), (22), (21)), ((31, 13), (31, 11), (12))},

so we get ν(4,2);G2 = 2, and this the value of the polynomial n2 − 2n + 2 for
n = 2.

(iii) Let us suppose that n ≥ 3. We have

L (Gn, S2n × S1 × S1) =
{((

31, 12n−1
)

,
(

31, 12n−3
)

,
(

11
)

,
(

11
))

,
((

32, 12n−4
)

,
(

32, 12n−6
)

,
(

11
)

,
(

11
))}

,

and therefore

ν(2n,12);Gn
= 1

18

(
(2n + 2)!
(2n)!1!1! +4

z(31,12n−1)

z(31,12n−3)z(11)z(11)
+4

z(32,12n−4)

z(32,12n−6)z(11)z(11)

)

= 1

18

(
(2n + 2)(2n + 1) + 4

311!12n−1(2n − 1)!
311!12n−3(2n − 3)!111!111!

+ 4
322!12n−4(2n − 4)!

322!12n−6(2n − 6)!111!111!
)

= 1

18
((2n + 2)(2n + 1) + 4(2n − 1)(2n − 2) + 4(2n−4)(2n−5))

= n2 − 5n + 5.
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In case n = 2, we have

L(G2, S4 × S1 × S1) = {((31, 11), (11), (11))},

so we obtain ν(4,12);G2
= 3, and this also is the value of the polynomial 2n2 −

5n + 5 at n = 2.
(iv) Here we suppose n ≥ 4. We have

L(Gn, S2n−1 × S3) =
{((31, 12n−1), (31, 12n−4), (13)), ((31, 12n−1), (12n−1), (31)),

((32, 12n−4), (31, 12n−4), (31)), ((32, 12n−4), (32, 12n−7), (13))},

and hence we get

ν(2n−1,3);Gn = 1

18

(
(2n + 2)!

(2n − 1)!3! + 4
z(31,12n−1)

z(31,12n−4)z(13)
+ 4

z(31,12n−1)

z(12n−1)z(31)

+ 4
z(32,12n−4)

z(31,12n−4)z(31)

)
+ 4

z(32,12n−4)

z(32,12n−7)z(13)

= 1

18

(
(2n + 2)(2n + 1)(2n)

6
+ 4

311!12n−1(2n − 1)!
311!12n−4(2n − 4)!133!

+ 4
311!12n−1(2n − 1)!
12n−1(2n − 1)!311!

+ 4
322!12n−4(2n − 4)!

311!12n−4(2n − 4)!311! + 4
322!12n−4(2n − 4)!

322!12n−7(2n − 7)!133!
)

= 1

18

(
2

3
(2n + 1)(n + 1)n + 2

3
(2n − 1)(2n − 2)(2n − 3)

+ 2

3
(2n − 4)(2n − 5)(2n − 6) + 12

)

= 1

3
(2n3 − 9n2 + 19n − 12).

Now, let n = 3 or n = 2. Then

L (Gn, S2n−1 × S3) =
{((

31, 12n−1
)
,
(

31, 12n−4
)
,
(

13
))

,
((

31, 12n−1
)
,

(
12n−1

)
,
(

31
))

,
((

32, 12n−4
)
,
(

31, 12n−4
)
,
(

31
))}

,

and we obtain ν(5,3);G3 = 6, ν(3,3);G2 = 2, and these numbers are the values of
the polynomial 1

3 (2n3 − 9n2 + 19n − 12) at n = 3 and n = 2, respectively.
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(v) First, let us suppose n ≥ 4. We have

L(Gn, S2n−1 × S2 × S1) =
{((31, 12n−1), (31, 12n−4), (12), (11)), ((32, 12n−4), (32, 12n−7), (12), (11))},

and hence we obtain

ν(2n−1,2,1);Gn = 1

18

(
(2n + 2)!

(2n − 1)!2!1! + 4
z(31,12n−1)

z(31,12n−4)z(12)z(11)

+ 4
z(32,12n−4)

z(32,12n−7)z(12)z(11)

)

= 1

18

(
(2n + 2)(2n + 1)(2n)

2
+ 4

311!12n−1(2n − 1)!
311!12n−4(2n − 4)!122!111!

+ 4
322!12n−4(2n − 4)!

322!12n−7(2n − 7)!122!111!
)

= 1

18
(2(2n + 1)(n + 1)n + 2(2n − 1)(2n − 2)(2n − 3)

+ 2(2n − 4)(2n − 5)(2n − 6))

= 2n3 − 9n2 + 19n − 14.

Now, let n = 3 or n = 2. Then

L (Gn, S2n−1 × S2 × S1) =
{((

31, 12n−1
)

,
(

31, 12n−4
)

,
(

12
)

,
(

11
))}

,

and ν(5,2,1);G3 = 16, ν(3,2,1);G2 = 4. The last two numbers are the values of the
polynomial 2n3 − 9n2 + 19n − 14 for n = 3, and n = 2, respectively.

(vi) Suppose that n ≥ 4. We have

L (Gn, S2n−1 × S1 × S1 × S1) =
{((

31, 12n−1
)

,
(

31, 12n−4
)

,
(

11
)

,
(

11
)

,
(

11
))

,
((

32, 12n−4
)

,
(

32, 12n−7
)

,
(

11
)

,
(

11
)

,
(

11
))}

,

and hence we obtain

ν(2n−1,13);Gn
= 1

18

(
(2n + 2)!

(2n − 1)!1!1!1! + 4
z(31,12n−1)

z(31,12n−4)z(11)z(11)z(11)

+ 4
z(32,12n−4)

z(32,12n−7)z(11)z(11)z(11)

)
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= 1

18

(
(2n + 2)(2n + 1)(2n) + 4

311!12n−1(2n − 1)!
311!12n−4(2n − 4)!(111!)3

+ 4
322!12n−4(2n − 4)!

322!12n−7(2n − 7)!(111!)3

)

= 1

18
(2(2n + 1)(n + 1)n + 4(2n − 1)(2n − 2)(2n − 3)

+ 4(2n − 4)(2n − 5)(2n − 6)) = 4n3 − 18n2 + 38n − 28.

Now, let us suppose n = 3 or n = 2. Then

L(Gn, S2n−1 × S1 × S1 × S1) =
{((

31, 12n−1
)

,
(

31, 12n−4
)

,
(

11
)

,
(

11
)

,
(

11
))}

,

and ν(5,2,1);G3 = 32, ν(3,2,1);G2 = 8. The last two numbers are the values of the
polynomial 4n3 − 18n2 + 38n − 28 for n = 3, and n = 2, respectively.
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